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ABSTRACT 

The scope of this applied research was to conduct an experiment using a motion 

simulator in order to (a) revisit the relationship between sway parameters and Motion 

Induced-Interruptions (MIIs) in a controlled environment, and (b) focus on the effect of 

the frequency (period) of the acceleration stimulus on MII occurrence. 

This study assesses lateral tipping, as opposed to sliding, MIIs of standing persons 

in a simulated motion environment representing dry deck conditions. Results verify 

previous findings that MII occurrence increases with increasing peak sway acceleration. 

Although MII occurrence was associated with the frequency of the motion stimulus, the 

effect is not as clear as that of acceleration. Overall, results suggest that complex, 

multidirectional motions create more tipping MIIs than unidirectional motion. Beyond 

acceleration, MII research also should incorporate frequency characteristics and motion 

complexity as factors influencing MII occurrence. 

In this study, we introduce the “probable” MII, a novel term referring to a slight, 

temporary loss of balance without tipping. This term fills the gap between the theoretical 

definition of an MII and a human-centered perception of an MII, where loss of balance is 

not a binary phenomenon. From a human performance perspective, the investigation of 

the “probable” MIIs may be of a value because they are more common than the “definite” 

MIIs (depending on the motion profile, this difference ranged from 16% to 67%). 

As a result of these findings, we developed a mathematical model of MII 

occurrence based on the amplitude and period of motion stimulus acceleration. The 

model assumes an additive combination two functions: a generalized logistic associated 

with the amplitude of acceleration and a Gaussian for period. The developed model 

approximated the observed MIIs with good results (< +/– 9% difference). 
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I. INTRODUCTION 

A. GENERAL 

The effects of environmental stressors on the structure, the crew, and the 

passengers of naval vessels must be considered as part of a systems engineering approach 

to ship design. Ship motions, especially in higher sea states, limit a crews’ ability to 

perform essential command, control, and communications functions; navigation tasks; 

maintenance responsibilities; and even the preparation of food (Stevens & Parsons, 

2002). Seakeeping analyses seek to determine the effects of vessel motion on operational 

performance (Graham, Baitis, & Meyers, 1992). We concur with Colwell’s (1989) 

comment that “. . . the goal of work on human performance in the naval environment is to 

develop methods and criteria which permit quantitative analysis of human performance 

and its degradation due to motion-induced problems” (p. 1). 

In the 1980s, researchers, engineers, and naval architects from the  

David W. Taylor Naval Ship Research and Development Center (now Naval Sea Systems 

Command Carderock Division – NSWC CD) identified Motion Induced Interruptions 

(MIIs) to be an important contributing factor to operational readiness at sea (Applebee, 

McNamara, & Baitis, 1980; Baitis, Applebee, & McNamara, 1984; Baitis, Woolaver, & 

Beck, 1983). As stated by Crossland and Rich (1998), excessive ship motion in rough 

weather will impair the fighting ability of a warship and degrade the crew’s ability to 

operate the ship’s systems. Initially, an MII was defined as an incident where a person 

slips, slides, or loses their balance (Baitis et al., 1984; Crossland & Lloyd, 1993; Graham, 

1990; Graham et al., 1992). Later, other researchers extended the initial definition by 

including task interruption. Crossland (2005) described an MII as an incident where ship 

motions become sufficiently large to cause a person to slide or lose balance unless they 

temporarily abandon their allotted task to pay attention to keeping upright. 

The integration of task interruption with the biodynamic effect of a ship’s motion 

was covered in the following definition intended for sailors being invited to participate in 

an MII research project (McCauley, Matsangas, & Miller, 2005, p. 4). 
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MIIs are all kinds of duty interruptions caused by ship’s motion. If standing, an 

MII could be sliding, losing balance, not being able to walk, or having to grab 

hold of anything firm so as to continue conducting a task. If seated, an MII could 

be holding on to a chair to prevent sliding, holding on to a console to continue 

watching the scope, or unusual difficulty in using the keyboard or other controls 

due to ship’s motion. In general, whenever the ship’s motion is making an 

individual stop what he/she is doing, even for a short amount of time, it is an MII. 

Crew safety and performance aboard ship requires that the human be able to 

maintain postural equilibrium and to avoid slips, trips, and falls induced by deck motion. 

Graham (1990) noted that the ability of personnel to keep their balance on the deck of a 

conventional-hull vessel is limited by the combination of deck inclination (pitch or roll) 

with lateral or vertical accelerations. 

Conceptually, MII research can be divided into two periods. The first one spans 

from the mid-80s to the mid-90s. It includes establishing the MII field of research  

(Baitis et al., 1984; Baitis et al., 1983), and the development of the rigid-body approach 

(Graham, 1990; Graham, Baitis, & Meyers, 1991; Graham et al., 1992). 

Initially, the rigid-body approach was based on the lateral force estimator (LFE) 

to estimate the occurrence of MIIs from lateral forces acting on the human body (Baitis  

et al., 1984). Later, Graham (1990) introduced the generalized LFE (GLFE), and 

extended model predictions in the frequency domain. The GLFE extended the utility of 

the model to combinations of lateral and vertical accelerations, whereas the frequency 

domain approach permitted the calculation of the number of MIIs per unit time  

(Graham, 1990; Graham et al., 1991). In 1992, an extension of the MII model included 

the effect of wind and longitudinal forces (Graham et al., 1992). 

Baitis and colleagues (1984) reported that lateral (y-axis) linear accelerations, also 

known as “sway,” were the most important contributors to MII and they offered 

preliminary predictions about the level of acceleration that would induce MIIs. The basis 

of these predictions is not clear. They also provided quantitative estimates of MII 

severity, as shown in Table 1. 
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Table 1. Predicted MII outcomes for various levels of lateral linear “sway” 
acceleration (adapted from Baitis et al., 1984, p. 193, Fig. 3) 

Predicted Outcome Acceleration (g) 
Possible MII 0.08 – 0.10 
Probable MII 0.10 – 0.12 
Serious MII 0.12 – 0.14 
Severe Limitations 0.14 – 0.16 
Extremely Hazardous above  0.16 

 

Subsequent research confirmed that sway and roll are critical components of MII 

development (Crossland & Lloyd, 1993). Beyond performance deterioration and 

biodynamic problems, MIIs have also been associated with increased risk for 

musculoskeletal injuries (MacKinnon, Matthews, Holmes, & Albert, 2011/2012). 

During the second period of MII research, subsequent research efforts identified 

gaps in the rigid body approach and started the development and investigation of more 

complex, articulated dynamic models, mimicking more closely the actual attributes of the 

human system. 

One of the issues associated with the rigid-body model is the “over-prediction” 

problem (Crossland & Rich, 1998; McCauley, Pierce, & Matsangas, 2007; Wedge & 

Langlois, 2003). The “Graham Tipping Equations,” as well as consequent formulations of 

the initial model, were based on the pioneering Carderock analyses and a strictly physical 

prediction of tipping over or sliding as a consequence of acceleration. The MII model 

assumes that the human acts like a rigid body (Graham, 1990; Graham et al., 1992). 

Therefore, this model does not take into account the ability of the human to predict 

motions and compensate by shifting their weight, adjusting their center of gravity, etc. 

Analyses of MIIs have extended the Carderock research by addressing the 

dynamics of human balance and postulating a multiple inverted pendulum model for the 

dynamics of human postural control (Langlois, 2010; Wedge & Langlois, 2003). 

As already noted, two kinds of MIIs were defined in the conventional approach 

(Baitis et al., 1984): tipping and sliding. Baitis et al. (1984) noted that higher friction 

coefficients between the shoe of the standing person and the deck would lead to tipping, 

whereas smaller friction coefficients would lead to sliding MIIs. 
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B. MIIS VERSUS MOTION AMPLITUDE AND FREQUENCY 

The central role of acceleration in postural responses, and the association between 

acceleration and MIIs, is known and well established in the literature (Baker & 

Mansfield, 2010; Brown, Jensen, Korff, & Woollacott, 2001). 

The effect of frequency (or period) on MII occurrence, however, is not clear. Sari 

and Griffin (2009) conducted a study with walking participants reporting their estimates 

of losing their balance while they were in a low frequency (0.5 to 2 Hz) lateral oscillation 

environment. Within the 0.5 Hz to 2 Hz range, they concluded that the probability of 

losing one’s balance decreased as the frequency increased, and that the highest incidence 

of MIIs was found at approximately 0.5 Hz. A study by Nawayseh and Griffin (2006) 

found that standing people had increased balance problems at low frequencies (0.125 Hz 

to 0.5 Hz) compared to higher frequencies (0.5 Hz to 2 Hz). These results contradict other 

studies concluding that increased frequency leads to increased biodynamic problems for 

standing or walking persons (Bles, Nooy, & Boer, 2002; Crossland & Lloyd, 1993). 

Experiments conducted at the U.S. Naval Biodynamics Laboratory (NBDL) found that 

the effect of frequency on MIIs depends on the direction of the human body compared to 

a ship’s axes (Crossland, Colwell, Baitis, Holcombe, & Strong, 1994; Crossland & Lloyd, 

1993). Based on their MII findings on various tasks, the researchers suggested that low 

frequency motion profiles create fewer biodynamic problems. 

Motion complexity also is associated with MII occurrence. The finding that 

complex, multidirectional motions create more tipping MIIs than simple, linear motions 

(e.g., single-axis motions) has been attributed to the unpredictability of complex motions. 

The more complex a motion profile, the more difficult it is for the human to predict and 

compensate for it (Crossland, 2005; Horak & Nashner, 1986). 

Lastly, the relative direction of motion, compared to the human body stance, 

affects MII occurrence. For a person facing forward or aft, the roll component 

significantly reduces standing or walking balance (Bles et al., 2002; Crossland & Lloyd, 

1993; Wertheim, Heus, & Vrijkotte, 1994). Another study, however, found conflicting 

results. In a simulated ship-motion study, participants were performing manual material 

handling tasks (Holmes et al., 2005; Matthews, MacKinnon, Albert, Holmes, & 
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Patterson, 2007), and results showed that pitch motion had a significantly more adverse 

effect on MII occurrence, compared to roll or quartering motions. 

C. BALANCE AND BODY MASS 

In general, the relationship between body weight and balance is supported by 

studies of human balance control and gait. Research assessing static balance, postural 

sway, or walking at self-selected speed has found that increased body weight and Body 

Mass Index (BMI) have a negative effect on postural stability (Greve, Cuğ, Dülgeroğlu, 

Brech, & Alonso; Hue et al., 2007; Ku, Abu Osman, Yusof, & Wan Abas, 2012; 

Southard, Dave, & Douris, 2010). 

D. BALANCE AND BASE OF SUPPORT 

Loss of balance is associated with the base of support of the human body in the 

direction of movement (Nawayseh & Griffin, 2006). To maintain balance, the standing 

person controls the position of the trunk, i.e., the body’s center of mass located in the 

trunk (Buchanan & Horak, 1999). Theoretically, stability is ensured when the center of 

mass lies within the base of support (e.g., stance width). Research, however, has also 

identified the functional stability region (FSR), which is the psychophysical portion of 

the base of support, where individuals ensure that their center of gravity lies within 

(Holbein & Redfern, 1997; McDermott, Shaw, Demchak, & Holbein, 2005). 

E. LEARNING TO COMPENSATE FOR MOTION 

Postural stability adaptation is a phenomenon investigated in current research 

literature. Adaptation to the vestibular stimulus has been observed in body sway induced 

by galvanic stimulation of the vestibular nerve and labyrinth. A postural adaptation time 

constant was identified in the range of 40-50 seconds (Johansson, Magnusson, & 

Fransson, 1995). Adaptation also has been observed in the amplitude of the center of 

pressure in a lateral motion environment, with the amplitude decreasing over repeated 

exposures (Buchanan & Horak, 1999). Another study investigated support surface 

rotations and identified a generalized habituation in the postural control system (Keshner, 

Allum, & Pfaltz, 1987). 
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In previous field research, the results did not reveal midterm (in the order of two 

days) MII adaptation to ship motion (McCauley & Matsangas, 2005; McCauley et al., 

2005). However, a long-term adaptation effect for MIIs—perhaps on the order of months 

or years—has been observed (McCauley, Pierce, Matsangas et al., 2007). The researchers 

noted that: 

It is likely that more sea experience leads to relatively automatic compensation for 

mild motion effects that contribute to MIIs. . . . at-sea experience builds long term 

adaptation for maintaining postural stability, locomotion, and countering 

interference with manual tasks despite motion perturbations. (McCauley, Pierce, 

Matsangas et al., 2007, p. 55) 

F. TIPPING COEFFICIENT 

The tipping coefficient is a critical component of the legacy (Carderock) MII 

model. The tipping coefficient defines the threshold for when an MII will occur. The 

lower the tipping coefficient, the harder it is to maintain balance (Crossland & Rich, 

1998). The coefficient, expressed as the estimated number of MIIs per minute, provides a 

metric to evaluate the probability of tipping during a given time period. It is interesting to 

note Crossland and Lloyd’s (1993) comment that “the ability to predict ‘on average’ the 

number of MIIs expected on a particular design of ship in a variety of run conditions is 

sufficient for the ship designer” (p. 1). 

The tipping coefficient for body-lateral MIIs is defined as the ratio of half the 

stance width (including shoe width) (l) over the height (h) of the Center of Gravity (CG), 

as depicted in Figure 1 (Crossland & Lloyd, 1993; Graham, 1990). 
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Figure 1. Model of a person facing forward or aft (from Graham, 1990, p. 67) 

Crossland and Lloyd (1993) identified three methods to derive the  

tipping coefficient: 

• By measuring the physical dimensions of the participants (“theoretical”). 

Based on this method, Graham (1990) used the representative values of 

h=0.91 m and l=0.23 m, which lead to a value of 0.25 for the tipping 

coefficient appropriate to lateral MIIs. This value was verified by 

Crossland and Lloyd (1993), who found that, for lateral MIIs, the 

theoretical and global estimates were very consistent, in the range 0.25  

to 0.27. 

• By counting the total number of MIIs in each run and finding the value of 

the tipping coefficient required to yield that result (the “global” tipping 

coefficient). This metric is also called the “empirical” method (Crossland 

& Rich, 1998). 

• By examining each MII and estimating the value of the tipping coefficient 

from the records of the ship motions experienced at that time (the 

“instantaneous or local” tipping coefficient). 

Crossland and Lloyd (1993) calculated the global tipping coefficient over the 

entire session of MIIs by comparing the predicted and observed number of MIIs. The 

derived global tipping coefficients for standing and facing fore/aft, or athwartships, 

compared well with Graham’s (1990) estimations of the tipping coefficients. Based on 

their results, the authors postulated that all the MIIs are roll driven (Crossland & Lloyd, 
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1993). It should be noted, however, that these experiments were conducted with a 

simulator that could not create sway motion. 

G. SCOPE 

The scope of this study is to conduct a simulated motion experiment in order to 

(a) revisit the relationship between sway parameters and MIIs in a controlled 

environment, and (b) focus on the effect of the frequency (period) of the acceleration 

stimulus on MII occurrence. 
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II. METHODOLOGY 

A. EXPERIMENTAL DESIGN 

The initial design was based on our belief that, for inducing MIIs, the important 

motion variables are: 

• Axis. 

• Acceleration level. 

• Period of the acceleration stimulus. 

We examined the lateral (sway) motion with the participants facing forward.  

Close reading of the Carderock literature actually suggests that the regions slightly “aft” 

of 90 degrees and 270 degrees might be the most likely to induce MIIs. For simplicity, 

we chose to use 90 and 270 because they are cardinal compass points and relatively close 

to the maxima suggested by earlier research (Baitis et al., 1984). 

Our initial partial factorial design varied acceleration, as per Table 2, from 0.08 g 

to 0.16 g (input command levels of acceleration to the motion base). While we had no 

previous data on which to base the range of time (duration) of the acceleration, it became 

obvious that the simulator’s horizontal displacement limit was a major constraint. Even at 

the lowest level of acceleration (0.08 g) in the initial protocol, we were unable to achieve 

a two-second duration without hitting the “stops.” According to our calculations, the “X” 

entries in Table 2 indicate that the motion conditions, defined by the combination of 

acceleration level and the time period of the acceleration, could NOT be achieved 

because of the displacement limits of this motion platform. 

Table 2. Initial factorial design 

Acceleration (g) 
(peak) 

Period (sec) 
0.5 1.0 1.5 1.25 1.65 

0.08      
0.10     X 
0.12   X X X 
0.14   X X X 
0.16  X X X X 
 



 10 

The final definition of the motion conditions will be given later in this section 

because the initial exploratory investigation (see Appendix E) provided data that fed-back 

to revision of the experimental design. 

In conjunction with the sway motion, three other motion conditions were 

introduced—pitch, roll, and pitch + roll.  In each case, the motion was a continuous, 

sinusoidal oscillation, defined by the angular displacements and sine wave periods shown 

in Table 3. 

Table 3. Definition of the angular motion conditions 

Condition Angular Displacement (deg) Period (sec) 
Pitch +/– 6 8 
Roll +/– 5 8 

Pitch + Roll Pitch +/– 6 
Roll +/– 5 

8 
7 

 

The change in period (seven seconds) for the Roll in the Pitch + Roll condition 

was to avoid a time-locked relationship between the pitch and roll axes. The sway 

acceleration was initiated from the left or right in a sequence that was not easily 

predictable by the participant. The sway motion was initiated at one of three times 

relative to the angular motion—at full left, center (flat), or full right roll, or for pitch at 

full pitch down, level, or full pitch up. 

B. PARTICIPANTS 

The Participants were recruited by convenience from the military and civilian 

staff population working at the Naval Surface Warfare Center Panama City Division 

(NSWC-PCD). No rewards or inducements were given. A job number was provided that 

could be used in the NSWC-PCD accounting system to charge their labor time (two 

hours) for participating in this research. 

Initially, 22 individuals participated in the study. For each Participant, the 

available data are shown in Appendix A. Data analysis was based on 20 Participants. 

Participant 2902 was excluded because of lack of data. In order to have five Participants 

per motion condition, we randomly selected Participant 3102 to be excluded from  

the analysis. 
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C. EQUIPMENT AND INSTRUMENTS 

1. Vicon Motion Capture System 

A Vicon motion capture system was set up with seven cameras to measure body 

position and movement of the Participants. The Participants wore a body suit embedded 

with over 50 reflectors to support the body-motion analysis. 

A full report of the data from the motion capture system will be submitted 

separately. 

 

Figure 2. Researcher wearing the motion capture suit with IR reflectors 

2. Motion Base 

This study was made possible by the use of a MOOG 6DOF5000 motion platform 

that had the capability to produce motion in six degrees of freedom (pitch, roll, yaw and 

heave, surge, and sway), with a payload up to 5,000 pounds. 
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Figure 3. A MOOG 6-DOF motion base similar to the one used in this study 

This platform is a “synergistic hexapod” or “Stewart Platform” motion base, 

similar to those used with many flight simulators. There were, however, some limitations 

with the use of this motion platform for our purposes; namely, the maximum lateral 

displacement was +/– 14.4 inches. Acceleration levels of up to 0.75 g were possible with 

this motion platform, but that relatively high level of acceleration could only be applied 

for a very short time (on the order less than one second) before the displacement limit 

was reached. 

3. Motion Sensors on the Platform 

Motion sensors were affixed to the motion platform to provide an independent 

check on the actual levels of acceleration produced by the equipment. The cabin was 

removed and a padded hand-rail was installed on all four sides of the platform. The setup 

was similar to a small boxing ring, with the ropes on four sides being equivalent to the 

padded handrails. 

4. Study Questionnaires 

Participants completed two questionnaires. The pretest questionnaire was 

administered before the data collection and was used mainly for screening. Participants 

answered whether they had been diagnosed with vestibular or other disorders, or injuries 

that could affect their performance in the experiment. Participants also provided 

information regarding their usual state of fitness, medication use, alcohol and caffeinated 
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drinks consumption, basic demographic information, and completed the Motion Sickness 

Assessment Questionnaire (MSAQ). The posttest questionnaire included questions 

regarding the severity of MIIs during the test, and the MSAQ. The study questionnaires 

are included in Appendix A. 

5. MSAQ 

The Motion Sickness Assessment Questionnaire (MSAQ) is used for the 

assessment of motion sickness severity (Gianaros, Muth, Mordkoff, Levine, & Stern, 

2001). The MSAQ includes 16 symptoms leading to four subscales (Gastrointestinal, 

Central, Peripheral, and Sopite-related). The linear combination of the subscale scores 

leads to the overall motion sickness score. The MSAQ has been used in a number of NPS 

field studies with good results (McCauley & Matsangas, 2005; McCauley et al., 2005; 

McCauley, Pierce, & Matsangas, 2007; McCauley, Pierce, Matsangas et al., 2007). 

The utility of MSAQ in this study is based on the nonspecificity associated with 

motion sickness symptoms (Wiker & Pepper, 1978). Symptoms associated with motion 

sickness, such as headache or fatigue, also can be observed in the absence of a 

nauseogenic stimulus for any number of reasons. Drowsiness, headache, and general 

discomfort sometimes will exist even in static/dockside conditions (Wiker & Pepper, 

1978). Therefore, we used MSAQ to collect ratings for the 16 symptoms as a check that 

motion sickness symptoms were not being introduced by the motion environment of  

this study. 

6. Sharpened Romberg Test 

The Sharpened Romberg test assesses postural instability (Lanska & Goetz, 2000; 

Wilkins & Brody, 1968). The Participant stands with arms folded across their chest, and 

feet in a heel-to-toe position. They are instructed to close their eyes and hold this position 

for 30 seconds, while postural sway is assessed. The time-to-balance failure was recorded 

using stopwatch. A positive test was indicated by the Participant’s failure in any one of 

three criteria: keeping the eyes closed, a loss of balance requiring the feet to move, or the 

inability to maintain the arms across the chest. 



 14 

D. PROCEDURES 

This research proposal was approved by the Naval Postgraduate School 

Institutional Review Board (IRB). Data collection was conducted at NSWC-PCD in late 

October and early November 2012. 

Initially, the Participants were informed of the purpose of the study and their right 

to terminate their participation at any time without consequence. They donned a special 

suit with embedded reflectors to enable body motion measurement via the Vicon motion 

capture system. After completing the initial paper surveys, the Sharpened Romberg test 

was administered. The Participants were escorted onto the motion platform, where they 

donned a safety harness that was clipped onto an overhead beam to ensure their safety. 

 

Figure 4. Participant on the motion platform wearing the reflector suit and  
facing “forward” 

The Participants were instructed to place their feet approximately shoulder-width 

apart at the center of rotation of both the pitch and roll axes (at the longitudinal axis of 

the “ship”) facing “forward.” For each Participant, initial foot position was marked on the 

platform to ensure a consistent foot position within and across trials. While on the motion 

platform, the participants had full vision of the interior of the lighted room. No cognitive 

tasks were assigned. Their only instruction was to stand normally, knees slightly bent, 

hands relaxed at their side, and eyes open. After each sway event, the Participant 

provided a rating on a 1-5 scale to indicate the intensity of the motion event, where 1 was 

benign (barely noticeable) and 5 was “intense” and difficult or nearly impossible to 

maintain balance. 
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A researcher was located in the same room keeping a log of MIIs and comments 

regarding the MIIs or other interesting information. Each Participant was on the motion 

platform for approximately 60 minutes, during which they participated in four motion 

conditions. One motion condition included only the transient motion component, sway 

(lateral, Y-axis) acceleration, whereas the rest of motion conditions included a 

combination of the transient sway component superimposed on nontransient, angular 

oscillations (Sway only, Pitch + Sway, Roll + Sway, Pitch + Roll + Sway). 

The main trigger for the MII is whole body sway motion. The waveform of the 

sway was characterized as a one-cycle oscillation from position A to B to A. The peak 

acceleration specified for each “sway trial” was equal in the two directions (A to B and 

the immediate return B to A). The period of each trial was the period of a sine wave with 

one full cycle of displacement (A to B to A). In each case, a “trial” was one sway 

acceleration, either alone (“Sway Session”) or in addition to one or more continuous 

angular oscillations (Pitch or Roll) defined later in this Section. The order of the four 

sessions was changed by starting each Participant on the next of the four conditions (the 

first Participant started with Sway Session, the second Participant started with the  

Pitch-Sway Session, etc.). Participant numbers were coded by the date and arrival 

sequence. The Participant was on 1 November, so the number was 0101; the second 

Participant for that day was 0102, and so on. A five-minute break was scheduled after the 

first two sessions. There were 120 motion trials per one-hour experimental session. 

1. Sway-Only Motion Session 

Each sway-only motion session included 32 trials. The trials consisted of two 

iterations of each cell in the following matrix (“√” means that the corresponding data 

exist). Trials 17 to 32 are repeating the motion attributes of trials 1 to 16. The two 

iterations were not consecutive, but rather a sequence throughout the entire matrix twice. 

The motion combinations of the sway amplitude acceleration and period are shown in 

Table 4 (input command levels of acceleration to the motion base). 
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Table 4. Sway-only motion parameters 

Peak 
Acceleration [g] 

Period [sec] 
1.00 1.50 1.75 2.00 

0.12    √ 
0.14    √ 
0.16 √ √ √ √ 
0.18    √ 
0.20 √ √ √  
0.24 √ √ √  
0.28 √ √ X  

 

The cell with an “X” was not feasible due to the platform displacement limits, so 

a combination of 0.28 g and a 1.5-second period was used instead. Motion characteristics 

in each trial are shown in detail in Appendix C. The initiation of the sway trials occurred 

at an unpredictable time, depending primarily on the time required to enter the data into 

the motion platform control system for the next trial. The average intertrial interval was 

17.6 seconds (SD=3.11, MD=17.1). 

2. Pitch and Sway Motion Session 

The 32 sway trials were superimposed on a sinusoidal pitch oscillation, with an 

angular displacement of +/– 6 degrees and a period of 8 seconds. The sway acceleration 

was initiated at one of three angular positions of the pitch motion—full pitch down  

(–6 degrees), full pitch up (+6 degrees), and horizontal (0 degrees). The motion 

combinations of the sway amplitude acceleration and period are shown in Table 5 (input 

command levels of acceleration to the motion base). 

Table 5. Sway combinations within the Pitch + Sway motion condition 

Peak Acceleration 
[g] 

Period (sec) 
1.50 1.75 2.00 

0.16 √ √  
0.18   √ 
0.20 √ √  
0.24 √ √  
0.28 √ X  
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The cell with an “X” was not feasible due to the platform displacement limits, so 

a unique combination of 0.18 g and a 2.0-second period was used instead. Motion 

characteristics in each trial are shown in detail in Appendix C. The average intertrial 

interval was 32.3 seconds (SD=7.15, MD=32.1). 

3. Roll and Sway Motion Session

The 32 sway trials were superimposed on a sinusoidal roll oscillation, with an 

angular displacement of +/– 5 degrees and a period of 8 seconds. The sway acceleration 

was initiated at one of three angular positions of the roll motion—full left (–5 degrees), 

full right (+5 degrees), and horizontal (0 degrees). The motion combinations of the sway 

amplitude acceleration and period are shown in Table 6 (input command levels of 

acceleration to the motion base). 

Table 6. Sway combinations within the Roll + Sway motion condition 

Peak Acceleration 
[g] 

Period (sec) 
1.25 1.50 

0.16 √ √ 
0.20 √ √ 
0.24 √ √ 
0.28 √ √ 

Motion characteristics in each trial are shown in detail in Appendix C. The 

average intertrial interval was 32.3 seconds (SD=7.14, MD=32.1). 

4. Pitch, Roll, and Sway Motion Session

The 24 sway trials were superimposed on two sinusoidal motions: a roll and a 

pitch oscillation combined. The motions for this session were based on the partially 

factorial combination of the motions in the previous sessions: 

• Pitch = +/– 6 degrees with a period of 8 seconds.

• Roll = +/– 5 degrees with a period of 7 seconds.

The roll period differed from the previous session because we wanted to avoid 

synchronizing the roll and pitch periods. 

The motion combinations of the sway amplitude acceleration and period are 

shown in Table 7 (input command levels of acceleration to the motion base). 
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Table 7. Sway combinations within the Pitch + Roll + Sway motion condition 

Peak Acceleration 
[g] 

Period (sec) 
1.00 1.75 2.00 

0.14   √ 
0.16 √ √  
0.18   √ 
0.24  √  
0.28 √   

 

Motion characteristics in each trial are shown in detail in Appendix C. The 

average interval between trials was 27.9 seconds (SD=6.20, MD=28.1). 

5. External Validity of Motion Profiles 

The simulated motion profiles are simple compared to the actual motion of ships 

at sea. We believe that the chosen profiles are a reasonable compromise between 

simplicity and complexity, without jeopardizing the external validity and generalizability 

of our findings. 

First, we increased complexity gradually, from unidirectional motion (sway-only) 

to multidirectional (sway + pitch, sway + roll + pitch), and from simple sinusoidal (sway-

only) to complex (sway + roll, sway + pitch, sway + roll + pitch). Sinusoidal motion for 

each motion component was used to simplify the motion complexity. Under the 

assumption that complex motion increases biodynamic interference (Bles et al., 2002; 

Crossland, 2005), using simple sinusoidal components may be a scenario with less MIIs. 

The motion characteristics were: sway acceleration ranged from 0.12 to 0.28 g; sway 

period ranged from 1 to 2 seconds; pitch angular displacement was +/– 6 degrees; roll 

angular displacement was +/– 5 degrees; pitch and roll period was 8 seconds, except in 

the sway+pitch+roll conditions, where the roll period was 7 seconds. These motion 

parameters are comparable to what is found in vessels like the FFG-7 frigate (Morrison, 

Dobie, Willems, Webb, & Endler, 1991) or in earlier MII research (Crossland & Lloyd, 

1993). The duration of the motion session, approximately one hour, is comparable to that 

used in earlier MII research (Baker & Mansfield, 2010; Crossland & Lloyd, 1993; 

Crossland & Rich, 1998). 
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We did not include wind, longitudinal, or heave motion. The significance of wind 

to the development of motion interruptions was emphasized by Baitis et al. (1984). We 

also decided not to simulate heave because it would create changes in friction between 

the Participant’s feet and the platform and add to the complexity of the data. 

Consequently, we located the Participants at the center of pitch and roll motion axes in 

the absence of any heave component. Furthermore, the absence of longitudinal motion is 

reasonable for monohull designs (Baitis, Bales, McCreight, & Meyers, 1976;  

Graham, 1990). 

Overall, the simulated motion environment can be described as mild to moderate. 

The motion environment is not extreme because there was no heave motion and the 

limited displacement of the simulator constrained the motion events, making MIIs 

possible, but not inevitable. We attempted to define the motion conditions: (a) to simplify 

the situation, (b) to be in the realm of actual ship motion, and (c) to allow for the 

development of MIIs within the ability of human to compensate for biodynamic 

interference. 

E. VARIABLES 

1. Independent Variables 

The independent variables of the study were the sway sinusoidal motion attributes 

(acceleration and period) and motion condition: 

• Sway-only. 

• Sway and pitch. 

• Sway and roll. 

• Sway combined with pitch and roll. 

2. Controlled Variables 

The controlled variables in the study were: 

• Direction that the sway acceleration was initiated. 

• For the motion conditions other than “Sway only,” consideration was 

given to the position of the angular oscillation at the time that the sway 

acceleration was initiated. 
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• The order of motion conditions. 

• The view the Participants had while on the motion platform. 

• The lighting conditions in the laboratory. 

• The distance between a Participant’s feet while standing on the  

motion platform. 

• The friction coefficient between shoe and deck. A gritty material, the “3M 

SafetyWalk,” was applied to the central part of the motion platform. This 

material is typical for ships (e.g., LCACs). 

• Participants’ shoe size was measured and Participants were instructed to 

wear shoes with elastic soles, such as running shoes. 

3. Dependent Variables 

The primary dependent variable was the researcher’s assessment of whether an 

MII occurred or not. The researcher was able to see the Participant’s feet, both directly 

and via a video camera looking straight down on the Participant’s head and feet. There 

were, however, certain minor movements like a slight rising of the heel that were 

assigned to a category of “probable.” So, the researcher made a judgment on each trial, 

allocating the outcome of each trial to one of three MII categories—Definite, No,  

or Probable. 

Other dependent variables were the estimation of the type of the MII (heel; step; 

both feet, hanging), and the Participant’s estimation of motion severity (five-point Likert 

scale). For the record, “hanging” meant that both feet left the surface of the motion 

platform and the Participant was supported (briefly) by the safety harness. Based on the 

existing literature, the “step,” “both feet,” and “hanging” are defined as an MII (Graham 

et al., 1992). Therefore, the conventional definition of MII is included in the “Definite” 

MII category in this work. 

F. ANALYSIS 

The statistical distribution of MIIs is unknown (Crossland & Lloyd, 1993). 

Therefore, our analysis is based both on parametric and nonparametric methods. Analysis 

included the following steps: 
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• Demographics and analysis of the developed symptoms in motion.

• MIIs analysis (the main focus of this study).

o Descriptive results.

o Development of a regression model to account for the

observed MIIs.

• Adaptation of MIIs over time and investigation of the association between

MIIs occurrence per Participant and demographic variables.

• Analysis of the types of MIIs per motion condition and the subjective

ratings of motion severity.

• Comparison with the rigid body model.

Specifically, the comparison with the rigid body model was based on the observed 

and the predicted incidence of MIIs. We estimated the value of the tipping coefficient for 

each MII. Based on the revision of the original rigid body model, we have the following 

equation (after Graham et al., 1992, equations 18 and 19). 
𝑙
ℎ
�𝑔 + 𝐷̈3� < �− 1

3
ℎ𝜂̈4 + 𝐷̈2 + 𝑔𝜂4�,

where h is the height of the Participant’s center of gravity, 𝜼̈𝟒 is the instantaneous roll 

acceleration, 𝑫̈𝟐 is the lateral acceleration, g is the acceleration of gravity, 𝜼𝟒 is the 

instantaneous roll angle, 𝑫̈𝟑 is the vertical acceleration, and l is half of the Participant’s 

base of support. The term (𝟏/𝟑)𝒉𝜼̈𝟒 is considered to be small for frigates and destroyers 

(Graham et al., 1992), and was omitted in the initial MII rigid model publications 

(Baitis et al., 1984; Graham, 1990). For sway-only motion, an MII occurs when the 

tipping estimator function is equal to or greater than the tipping coefficient. 

�𝐷̈2�
g

 ≥
𝑙
ℎ

For the detection of motion characteristics leading to the development of MIIs, 

earlier efforts assessed the time period prior to each MII occurrence. After marking an 

MII, researchers evaluated the maximum acceleration within two to four seconds prior 

the events (Crossland et al., 2007; Crossland & Lloyd, 1993). Based on these local 

maxima motion conditions, the corresponding lateral tipping coefficient was calculated 

for each MII event. However, the motion component used for the development of MIIs in 

our experiment is the sway stimulus occurring on each trial. Therefore, we used an 



 22 

adjusted method; first, we identify the maximum lateral acceleration within each MII trial 

from the sensors mounted on the motion platform. If the observed lateral acceleration 

within each MII trial exceeds the Participant’s tipping coefficient, then the model predicts 

an MII. The number of predicted MIIs is then compared to the observed MIIs. 

The “global” tipping coefficient was calculated by adjusting the tipping 

coefficient to finding the value required to yield that observed total number of MIIs. 

G. DEMOGRAPHICS 

Twenty healthy individuals participated in the study (14 males and 6 females). 

The demographics are given in Table 8. 

Table 8. Demographics 

Parameter Mean (SD, MD) Minimum Maximum 
Sea experience [years] 2.33 (5.92, 0.07) 0 25 
Height [inches] 70.3 (2.85, 70.9) 65 76 
Weight [lbs.] 193 (42.3, 188) 132 266 
BMI 27.3 (4.70, 27.3) 20.3 34.9 
Shoe size MD=10 7 13 
Sharpened Romberg Test (third test) [sec] 26.5 (7.65, 30) 5 30 

 

The detailed information for height, weight, and shoe size are shown in  

Appendix D. 
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III. RESULTS 

A. PRELIMINARY FINDINGS AND INSIGHTS 

Before the main data collection phase of the experiment, a number of preliminary 

trials were conducted. Although these pre-experiment findings are incidental to the main 

study, we report them in Appendix E because they were surprising and potentially 

informative. 

B. BASIC FINDINGS 

First, we assess the development of 16 symptoms included in the MSAQ. The 

MSAQ is a standardized tool used to evaluate symptoms typically associated with the 

onset and development of motion sickness. These symptoms, however, can also be 

observed in the absence of a nauseogenic stimulus; the symptoms are nonspecific to 

motion sickness. In order to assess how these symptoms develop over time under the 

nonnauseogenic motion conditions, we collected MSAQ ratings before the 

commencement of the test, in the middle of the data collection session, and at the end. 

As expected, the severity of symptoms was low. A one-way, within-subjects 

analysis of variance (ANOVA) was conducted to compare the effect of time on MSAQ 

indices (Total, [G]astrointestinal, [C]entral, [P]eripheral, [S]oporific). Results show that 

MSAQ Total, and central-related symptoms increased over time (Total: F(2,18)=3.80, 

p=0.042; C: F(2,18)=4.31, p=0.030), whereas gastrointestinal, peripheral, and soporific 

symptoms did not change (G: F(2,18)=0.022, p=0.978; P: F(2,18)=1.74, p=0.203;  

S: F(2,18)=0.023, p=0.978). 

Next, we assessed the associations between MII occurrence and sea experience, 

height, weight, body mass index (BMI), feeling drowsy or tired/fatigued at the beginning 

of the data collection. Table 9 depicts our findings based on Spearman’s rho 

nonparametric correlation coefficient. 
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Table 9. Correlation analysis results 

Parameter MII Occurrence 
“Probable” “Definite” “Probable + Definite” 

Sea experience [yrs]    
Height [in] rho= –0.424, p=0.070   
Weight [lbs] rho= –0.433, p=0.064  rho= –0.423, p=0.071 
BMI rho= –0.331, p=0.166  rho= –0.411, p=0.081 
Shoe size rho= –0.426, p=0.069 rho= –0.519, 

p=0.023 
rho= –0.568, p=0.011 

Feeling drowsy rho= 0.545, p=0.016 rho=0.328,  
p=0.171 

rho=0.451, 
p=0.053 

Feeling tired/fatigued   rho=0.349,  
p=0.143 

Inclusion criterion: p<0.20 
 

We should note, however, that height, weight, BMI, and shoe size are correlated 

(Spearman’s correlation, p<0.001). Our analysis did not identify any significant 

associations between MII occurrence and MSAQ indices. 

C. OCCURENCE OF MIIs 

During our study, we did not observe any sliding events, only tipping MIIs. These 

MIIs are presented in this section. For each motion condition, three figures are shown—

one for “Probable” MIIs, one for “Definite,” and one for the sum of “Probable” and 

“Definite” MIIs. Each figure demonstrates the percent of MIIs developed in the 

corresponding combination of peak sway acceleration (A [g]) and period (P [sec]). The 

percent of MIIs is calculated by dividing the number of MIIs for the given combination 

of A and P by the corresponding number of sway trials. For example, in the roll 

combined with sway motion condition, there are 80 sway trials in the 0.16 g/1.5 second 

combination and 12 “Probable” MIIs leading to 15% MII occurrence. Figure 5 

demonstrates how tipping MII occurrence changes by peak sway acceleration (A [g]) and 

period (P [sec]) in Sway-only motion. 
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Figure 5. Sway-only motion. Three-D figures of MII occurrence (“Probable,” 
“Definite,” and “Probable + Definite”) by peak sway acceleration and period 
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The percentage MII occurrence in Sway-only motion is consolidated in Table 10. 

Table 10. MII occurrence [%] in Sway-only motion 

A [g] 
Period [sec] 

“Probable” “Definite” “Probable + Definite” 
1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2 

0.12     10.5     0.0     10.5 
0.14     10.5     2.6     13.2 
0.16 7.9  10.5 18.4 23.7 0.0  2.6 2.6 2.6 7.9  13.2 21.1 26.3 
0.18     31.6     7.9     39.5 
0.20 13.2  31.6 42.1  0.0  2.6 7.9  13.2  34.2 50.0  
0.22                
0.24 21.1  50.0 52.6  0.0  0.0 18.4  21.1  50.0 71.1  
0.26                
0.28 28.9  52.6   0.0  23.7   28.9  76.3   

 

Figure 6 demonstrates how MII occurrence changes by peak sway acceleration  

(A [g]) and period (P [sec]) in Sway + Roll motion. 
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Figure 6. Sway + Roll motion. 3-D figures of MII occurrence (“Probable,” 
“Definite,” and “Probable + Definite”) by peak sway acceleration and period 
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The percentage-wise MII occurrence in Sway + Roll motion is integrated in  

Table 11. 

Table 11. MII occurrence [%] in Sway + Roll motion 

A [g] 
Period [sec] 

“Probable” “Definite” “Probable + Definite” 
1.25 1.50 1.25 1.50 1.25 1.50 

0.16 17.5 15.0 8.8 5.0 26.3 20.0 
0.20 32.5 23.8 16.3 15.0 48.8 38.8 
0.24 33.8 27.5 27.5 26.3 61.3 53.8 
0.28 35.0 33.8 33.8 30.0 68.8 63.8 

 

Figure 7 demonstrates how MII occurrence changes by peak sway acceleration  

(A [g]) and period (P [sec]) in Sway + Pitch motion. 
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Figure 7. Sway + Pitch motion. 3-D figures of MII occurrence (“Probable,” 
“Definite,” and “Probable + Definite”) by peak sway acceleration and period 

The percentage-wise MII occurrence in Sway + Pitch motion is integrated in 

Table 12. 
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Table 12. MII occurrence [%] in Sway + Pitch motion 

A [g] 
Period [sec] 

“Probable” “Definite” “Probable + Definite” 
1.5 1.75 2 1.5 1.75 2 1.5 1.75 2 

0.16 8.8 21.3 2.5 5.0 11.3 26.3 
0.18 33.8 12.5 46.3 
0.20 21.3 28.8 3.8 7.5 25.0 36.3 
0.22 
0.24 40.0 48.8 16.3 7.5 56.3 56.3 
0.26 
0.28 45.0 31.3 76.3 

Figure 8 demonstrate how MII occurrence changes by peak sway acceleration 

(A [g]) and period (P [sec]) in Sway + Roll + Pitch motion. 
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Figure 8. Sway + Roll+ Pitch motion. 3-D figures of MII occurrence (“Probable,” 
“Definite,” “Probable + Definite”) by peak sway acceleration and period 
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The percentage-wise MII occurrence in Sway + Roll + Pitch motion is integrated 

in Table 13. 

Table 13. MII occurrence [%] in Sway + Roll + Pitch motion 

A 
[g] 

Period [sec] 
“Probable” “Definite” “Probable + Definite” 

1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2 
0.14     25.0     8.8     33.8 
0.16 8.8   21.3  15.0   8.8  23.8   30.0  
0.18     27.5     18.8     46.3 
0.20                
0.22                
0.24    46.3     31.3     77.5  
0.26                
0.28 26.3     27.5     53.8     

 

These results show the following points of interest. 

• All motion conditions. 

o MII occurrence increases when peak sway acceleration  

is increased. 

o When “Probable” MIIs increase, “Definite” MIIs also increase. 

• Sway-only motion: MII occurrence in sway-only motion increases with 

increasing sway period (in the range of 1.0 to 2.0 seconds). 

• Sway + Roll: Results suggest that the lower sway period (1.25 seconds), 

combined with roll motion, demonstrates approximately 7.20% more 

MIIs, compared to the longer sway period (1.50 seconds). 

• Sway + Roll + Pitch: MII occurrence increases with increasing sway 

period (in the range of 1.0 to 2.0 seconds). 

D. MODEL DEVELOPMENT 

Based on the percentage MIIs results of the previous section, we developed a 

regression surface. The dependent variable is the percentage MII occurrence derived as a 

function of the sway motion, which is the stimulus of biodynamic interference in this 

study. More specifically, the two components of the sinusoidal sway motion are 

acceleration amplitude (peak acceleration) A, and the period P of the sway motion. The 
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model assumes the interaction of two functions: a generalized logistic associated with 

acceleration amplitude and a Gaussian for period. 

The initial form of the generalized logistic function is given in Equation (1): 

𝑀𝐼𝐼(𝐴) = 𝐶 + 𝐾−𝐶

�1+𝑄𝑒−𝐵(𝐴−𝑀)�
1
𝑛
,               (1) 

where: 

• A is the sway acceleration amplitude. 

• C is the lower asymptote. 

• K is the upper asymptote. 

• B is the growth rate. 

• n is a parameter greater than 0. 

• Q and M are parameters. 

Given that MII occurrence percentage ranges from 0 to 100, we set C=0 and 

K=100. Overall, we simplified the previous form to the following: 

𝑀𝐼𝐼𝐴(𝐴) = 100
1+𝑒−𝐵(𝐴−𝑀),                (2) 

where: 

• A is the sway acceleration amplitude. 

• B is the growth rate. 

• M is a parameter. 

The Gaussian function is given by Equation (3): 

𝑀𝐼𝐼𝑃(𝑃) = 𝑒− �𝑃−𝐷𝐸 �
2

,                (3) 

where: 

• P is the sway period. 

• D and E are parameters. 

The model is given by Equation (4): 

𝑀𝐼𝐼(𝐴, 𝑃) = 100 1
1+𝑒−𝐵(𝐴−𝑀) 𝑒

− �𝑃−𝐷𝐸 �
2

.              (4) 

Based on this model, we optimized its fit to the data using the cftool interface in 

Matlab (information regarding cftool can be found at 

http://www.mathworks.com/help/curvefit/cftool.html). Table 14 depicts the results of 

fitting the model to the Sway-only motion condition data. 
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Table 14. Model attributes in Sway-only motion 

Parameter Probable Definite Probable + Definite 
B 30.86 32.71 28.84 
M 0.1954 0.2769 0.2004 
D 2.539 1.954 1.969 
E 1.386 0.4598 0.8784 

 

Figures 9 and 10 depict the model prediction for “Probable + Definite” MII 

occurrence in Sway-only motion. 

 

Figure 9. Model prediction of MII occurrence “Probable + Definite” in  
Sway-only motion 
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Figure 10. Contour plot of model prediction of MII occurrence “Probable + Definite” 
in Sway-only motion 

Table 15 depicts the results of fitting the model to the Sway and pitch motion 

condition data. 

Table 15. Model attributes in Sway and pitch motion 

Parameter Probable Definite Probable + Definite 
B 23.05 21.59 22.93 
M 0.2098 0.3207 0.2125 
D 2.314 0.678 2.147 
E –1.033 8.397 1.495 

 

Figures 11 and 12 depict the model prediction for “Probable + Definite” MII 

occurrence in Sway + Pitch motion. 
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Figure 11. Model prediction of MII occurrence “Probable + Definite” in 
Sway + Pitch motion 

Figure 12. Contour plot of model prediction of MII occurrence “Probable + Definite” 
in Sway + Pitch motion 
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Table 16 depicts the results of fitting the model to the Sway and Roll motion 

condition data. 

Table 16. Model attributes in Sway and Roll motion 

Parameter Probable Definite Probable + Definite 
B 39.99 32.29 28.9 
M 0.1611 0.2048 0.1832 
D –1.931 –3.971 0.0244 
E 3.16 5.212 2.25 

 

Figures 13 and 14 depict the model prediction for “Probable + Definite” MII 

occurrence in Sway + Roll motion. 

 

Figure 13. Model prediction of MII occurrence “Probable + Definite” in  
Sway + Roll motion 
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Figure 14. Contour plot of model prediction of MII occurrence “Probable + Definite” 
in Sway + Roll motion 

Table 17 depicts the results of fitting the model to the Sway combined with Roll 

and Pitch motion condition data. 

Table 17. Model attributes in Sway + Roll + Pitch motion 

Parameter Probable Definite Probable + Definite 
B 14.77 37.95 22.02 
M 0.2453 0.1709 0.1834 
D 1.945 22.52 2.034 
E 1.015 19.42 1.463 

 

Figures 15 and 16 depict the model prediction for “Probable + Definite” MII 

occurrence in Sway + Roll + Pitch motion. 
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Figure 15. Model prediction of MII occurrence “Probable + Definite” in  
Sway + Roll + Pitch motion 

 

Figure 16. Contour plot of model prediction of MII occurrence “Probable + Definite” 
in Sway + Roll + Pitch motion 

Table 18 shows the differences between observed and predicted MII occurrences 

in all motion conditions. 
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Table 18. Differences between predicted and observed MII occurrence 

Model MII Points Difference Δ 
(Predicted-Observed) 

N Min Max Mean StDev Median 
 Probable 15 –4.48% 5.11% 0.10% 2.79% –0.26% 
Sway Definite 15 –3.90% 8.68% –0.21% 2.88% 0.03% 
 Probably + Definite 15 –8.00% 7.00% –0.07% 3.72% 0.18% 
 Probable 8 –4.14% 4.20% 0.11% 3.41% 0.32% 
Sway + Pitch Definite 8 –8.04% 7.16% –0.47% 4. 40% –1.11% 
 Probably + Definite 8 –14.4% 10.6% –0.30% 8.48% 0.79% 
 Probable 8 –3.25 2.00 0.03 1.92 0.62 
Sway + Roll Definite 8 –1.77 1.33 0.02 1.00 0.29 
 Probably + Definite 8 –2.74 2.01 0.04 1.86 0.88 
 Probable 6 –7.62 0.54 –1.15 3.17 0.04 
Sway + Roll +  Definite 6 –3.34 3.93 –0.04 2.53 –0.30 
Pitch Probably + Definite 6 –5.99 6.01 –0.24 4.09 –0.29 

E. SEVERITY OF MIIs: A QUALITATIVE APPROACH 

Thus far, we have approached the MIIs from a quantitative perspective; the 

number of MIIs. It is interesting also to assess the severity of MIIs qualitatively by using 

the researcher’s evaluation of MII type and group. During data collection, a researcher 

logged the severity of each MII in three levels, as shown in Table 19. 

Table 19. MII groups and types 

MII Group MII Type 
Probable Heel 

Definite 
 

Step 
Both feet, hanging 

 

Results show that lowest MII occurrence was observed in the sway-only condition 

(M=34.5%), approximately 10% less than the rest of the motion conditions. This 

phenomenon was merely identified in “Definite” MIIs. In the sway-only motion, the 

corresponding occurrence was 5.90% and increasing to 10.8% in the Sway + Pitch 

condition, 18.3% in the Sway + Roll + Pitch, and 20.3% in the Sway + Roll condition. 

These results also show that motion profiles, including a roll component, induced more 

“Definite” MIIs compared to motions without roll (With Roll, M=19.3%, Without Roll, 

MD=8.35%). Lastly, the “Probable” MIIs are more frequent than “Definite” MIIs. 
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“Probable” MIIs are 58% of the observed MIIs in the Sway + Roll condition and 

increasing to 84% in the Sway-only conditions. These findings are depicted in Figure 17. 

 

Figure 17. MII occurrence (%) per motion condition 
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Figure 18. Motion intensity per motion condition 

Examination of the cell frequencies showed the subjectively evaluated worst 

motion condition is the sway combined with pitch. This finding is in contrast to the result 

reported earlier that the maximum MII occurrence was observed in the Sway + Roll 

condition. 
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model predicts 604 (almost 17 times more). Therefore, it is concluded that the rigid body 

model considerably overpredicts MII occurrence. These results are shown in Table 20. 

Table 20. Observed MIIs versus predicted by the Rigid Body Model in  
sway-only motion 

  Rigid Model Predictions 
  Yes No Total 
Experimental 
Observations 

Yes 36 0 36 
No 568 4 572 
Total 604 4 608 

 

The corresponding global tipping coefficient was approximately 0.45. 
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IV. DISCUSSION 

This study assesses lateral tipping MIIs of standing persons in a simulated motion 

environment representing dry deck conditions. The major finding of this experiment was 

that the occurrence of lateral MIIs is not only associated with sway acceleration 

amplitude, but with motion frequency characteristics and motion complexity. 

In congruence with previous MII research (e.g., Baker & Mansfield, 2010;  

Brown et al., 2001), this study shows that MII occurrence increases by increasing peak 

sway acceleration consistently in all motion conditions. 

The effect of frequency on MII occurrence, however, is not as clear as that of 

acceleration. In the present study, MII occurrence increases by increasing period in  

sway-only and sway + roll + pitch motion, but this finding is less evident in the sway + 

pitch motion condition. The trend, however, seems to be reversed when sway is 

combined with roll; lower sway period (1.25 seconds) demonstrated approximately 7% 

more MIIs compared to the higher sway period (1.5 seconds). These findings are 

integrated in Table 21 (e.g., in the sway-only condition increased sway frequency leads to 

less MIIs, whereas more acceleration leads to more MIIs). 

Table 21. Tipping MII occurrence by sway motion attribute  
(peak acceleration and frequency) 

Motion Condition Sway Motion Attributes 
Peak Acceleration Frequency 

Sway only   
Sway + Roll   
Sway + Pitch   

Sway + Roll + Pitch   
 

These results suggest that, within the motion envelope we investigated, the 

combination of sway motion with roll or pitch had a differential effect on the MII 

occurrence. Given that the legacy, rigid body MII model does not explicitly incorporate 

frequency, this finding contributes to our knowledge about MII occurrence. 

Based on existing literature and the findings in this study, we postulate that the 

association between lateral MII occurrence and motion attributes is influenced by overall 
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motion complexity and frequency characteristics. Earlier research identified that the 

effects of motion on postural control are frequency-dependent (Bles et al., 2002; 

Crossland et al., 1994; Crossland & Lloyd, 1993; Nawayseh & Griffin, 2006; Sari & 

Griffin, 2009) and that the effect of frequency on MIIs depends on the direction of the 

human body compared to a ship’s axes (Crossland et al., 1994; Crossland & Lloyd, 

1993). These studies, however, provided contradicting evidence regarding the association 

between the motion frequency and the severity of biodynamic problems. 

We believe that the explanation lies in how the human postural equilibrium 

system perceives induced-motion perturbations and compensates for them. In this 

context, compensation includes both the biomechanical (Bortolami, DiZio, Rabin, & 

Lackner, 2003) and the cognitive component. In a study conducted by Buchanan and 

Horak (1999), the researchers examined the frequency characteristics of human postural 

coordination with standing Participants during sinusoidal translations (12 cm peak to 

peak) in the anterior-posterior direction at six different frequencies. They concluded that 

human sensory and biomechanical constraints limit postural coordination patterns as a 

function of translation frequency. Center of mass motion amplitude decreased with 

increasing translation frequency, whereas the center of pressure amplitude increased with 

increasing translation frequency. Research also has identified the complex, nonlinear, 

coordination patterns between stimulus movement and postural response (Dijkstra, 

Schöner, Giese, & Gielen, 1994). The cognitive component includes the perceptual-

cognitive cycle of identifying induced motion profiles and predicting future perturbations 

(e.g., Horak & Nashner, 1986). 

Our findings are consistent with the complex dynamics underlying human posture 

control and, hence, the development of an MII. Excluding the time component, it seems 

that MII investigations should focus not only on the motion stimulus attributes (axis, 

acceleration, and frequency), but also on how the human perceives and reacts to motion. 

Overall, our data suggest two notable results. First, complex multidirectional 

motions create more tipping MIIs than simple, unidirectional motion; probably because 

complex motions are less predictable by the human (Crossland, 2005; Horak & Nashner, 

1986). Second, for a standing person facing fore/aft, the roll component significantly 

deteriorates standing balance. Our results show that motions including a roll component 
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double the occurrence of definite MIIs compared to motions without roll, from 8.35%  

to 19.3%. 

Based on our findings, we developed a mathematical model of MII occurrence as 

a function of the amplitude and period of motion stimulus acceleration. The model 

assumes an additive combination of two functions: a generalized logistic associated with 

the amplitude of acceleration and a Gaussian for period. The developed model 

approximated the observed MIIs with good results (< +/– 9% difference). 

In conjunction with earlier research, these results verify that the rigid body model 

of Graham (1990) considerably overpredicts MII occurrence (McCauley, Pierce, & 

Matsangas, 2007). The estimated global tipping coefficient is almost doubled, compared 

to the corresponding values found in experiments where Participants are involved with a 

task (Crossland et al., 2007; Crossland & Lloyd, 1993). Therefore, our Participants 

seemed to be “insensitive” to the lateral motion perturbations. This result is reasonable 

given that in this study, Participants were free to focus in maintaining their posture 

without being involved in other tasks. 

Second, the observed occurrence of MIIs in this study should be regarded as a 

best-case scenario because our Participants had their eyes open and had a stable visual 

reference, which is known to be associated with decreased MIIs (Dobie, May, & 

Flanagan, 2003). 

In this study, we introduced the “probable” MII; it is a novel term referring to an 

event where the individual temporarily loses balance slightly, but to an extent that is 

obvious to an external observer. An example is a slight elevation of the heel, but not 

severe enough to be counted as a clear tipping MII because the individual does not 

displace their foot. 

The “probable MII” fills the gap between the theoretical definition of an MII, and 

a human perceiving an MII. In existing research, an MII is defined as a loss-of-balance 

incidence due to tipping or sliding (Baitis et al., 1984; Graham, 1990). The MII is 

considered to occur whenever the forces acting on the person (acting as a rigid body) 

cause one foot to lift off the ground (Graham et al., 1992). Useful as it may be, this 

definition overlooks how the human reacts to balance perturbations by changing their 

center of mass and adjusting body posture to compensate for motion. Hence, loss of 
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balance is not a binary phenomenon. It may include a partial loss of balance, where the 

individual must stop their task for a short period of time. In this grey area of balance 

perturbations, portions of both feet may continue to touch the ground and, therefore, 

tipping does not occur. The human, however, adjusts their posture by moving their hands, 

bending, or lowering their center of gravity. In our experiment, the Participants were 

instructed to keep their hands relaxed at their side. In “probable” MIIs they tended to 

move one of their heels or to move their hands outward to readjust their center of gravity. 

From the conventional MII perspective, this posture change is not an MII. It may be an 

MII, however, if we consider a human performing a manual task that has to stop, even 

temporarily, because of motion. 

From a human performance perspective, the investigation of the “probable” MIIs 

may be of value because they are more common than the “definite” MIIs (depending on 

the motion profile, this difference ranged from 16% to 67%). 
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V. RECOMMENDATIONS FOR FUTURE RESEARCH 

The results of this study support the following recommendations: 

• Although the number of Participants used in this study is comparable to 
existing MII research (Crossland & Lloyd, 1993), future efforts should 
include a larger sample to enable analysis of demographic attributes, such 
as ship motion experience and MII occurrence. 

• Although we used the Sharpened Romberg test, future efforts should 
include more elaborate and validated tools to assess human postural 
stability (e.g., Chaudhry et al., 2005). 

• Heave oscillation undoubtedly affects friction between the Participants’ 
feet and the deck surface. Heave, combined with complex 
multidimensional motion, needs to be investigated to enable a more 
comprehensive model of MIIs aboard ship. 

• Assess the association between MII occurrence and displacement, 
compared with the support base dimensions. 

• Simulator platforms with a larger envelope of sway displacement are 
needed to address the motion envelope of interest. 

• Integrate the functional stability region (Holbein & Redfern, 1997; 
McDermott et al., 2005) with the rigid body model. 
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APPENDIX A. PRE- AND POSTTEST QUESTIONNAIRES 

Pretest Questionnaire 
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Posttest Questionnaire 
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APPENDIX B. PARTICIPANTS AND COLLECTED DATA 

Participant 
ID 

Motion 
Profile 

Screening 
and Pretest 

Q. 

Midtest 
Q. 

Posttest 
Q. 

Motion 
Profile/Noldus 

Video 

Researchers’ 
Data 

3001 1-2-3-4 √ √ √ √ √ 
3102 * 1-2-3-4 √ √ √ √ √ 
0103 1-2-3-4 √ √ √ √ √ 
0501 1-2-3-4 √ √ √ √ √ 
0603 1-2-3-4 √ √ √ √ √ 
0802 1-2-3-4 √ √ √ √ √ 

2902 * 1-2-3-4 √ √ √ √ (1-NA-NA-
NA) 

 

3002 2-3-4-1 √ √ √ √ √ 
3103 2-3-4-1 √ √ √ √ √ 
0201 2-3-4-1 √ √ √ √ √ 
0502 2-3-4-1 √ √ √ √ √ 
0701 2-3-4-1 √ √ √ √ √ 
3003 3-4-1-2 √ √ √ √ √ 
0101 3-4-1-2 √ √ √ √ √ 
0601 3-4-1-2 √ √ √ √ √ 
0702 3-4-1-2 √ √ √ √ √ 
0202 3-4-1-2 √ √ √ √ (3-4-NA-2) √ 
3101 4-1-2-3 √ √ √ √ √ 
0102 4-1-2-3 √ √ √ √ √ 
0203 4-1-2-3 √ √ √ √ √ 
0602 4-1-2-3 √ √ √ √ √ 
0801 4-1-2-3 √ √ √ √ √ 
“√” means that the corresponding data exist 
“*” means that the corresponding data were not included in the analysis 
Motion Conditions: “1”=Sway, “2”=Pitch+Sway, “3”=Roll+Sway, 
“4”=Roll+Pitch+Sway 
“NA” = Not available data  
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APPENDIX C. MOTION CHARACTERISTICS FOR  
EACH TRIAL 

A. SWAY-ONLY MOTION SESSION 

Table 22 demonstrates in detail the motion characteristics in each trial. Trials 12 

and 28 are the ones affected by motion platform displacement limit. “Modifier” refers to 

the iteration of acceleration-period combination (e.g., the 16 trials with the same 

acceleration-period combination were repeated twice). 

Table 22. Attributes of Sway Trials 

Trial Number Modifier Acceleration (peak g) Period (sec) Direction 
T1 1 0.16 1.00 L 
T2 1 0.20 1.00 R 
T3 1 0.24 1.00 R 
T4 1 0.28 1.00 L 
T5 1 0.16 1.50 R 
T6 1 0.20 1.50 L 
T7 1 0.24 1.50 L 
T8 1 0.28 1.50 R 
T9 1 0.16 1.75 L 

T10 1 0.20 1.75 R 
T11 1 0.24 1.75 R 
T12 1 0.28 1.50 L 
T13 1 0.12 2.00 R 
T14 1 0.14 2.00 L 
T15 1 0.16 2.00 L 
T16 1 0.18 2.00 R 
T1 2 0.16 1.00 R 
T2 2 0.20 1.00 L 
T3 2 0.24 1.00 L 
T4 2 0.28 1.00 R 
T5 2 0.16 1.50 L 
T6 2 0.20 1.50 R 
T7 2 0.24 1.50 R 
T8 2 0.28 1.50 L 
T9 2 0.16 1.75 R 

T10 2 0.20 1.75 L 
T11 2 0.24 1.75 L 
T12 2 0.28 1.50 R 
T13 2 0.12 2.00 L 
T14 2 0.14 2.00 R 
T15 2 0.16 2.00 R 
T16 2 0.18 2.00 L 
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Note that the Direction and Phase conditions are not a full-factorial design, but 

were intended to make the time of initiation and direction of the sway impulse 

unpredictable by the Participant. 

B. PITCH AND SWAY MOTION SESSION 

Table 23 demonstrates in detail the motion characteristics in each trial. Trials 8, 

16, 24, and 32 are the ones affected by the motion platform displacement limit. 

Table 23. Attributes of Sway + Pitch trials 

Trial Number Modifier Sway Acceleration  
(peak g) 

Sway Period 
(sec) Sway Direction 

T1 1 0.24 1.50 L 
T2 1 0.28 1.50 R 
T3 1 0.24 1.73 L 
T4 1 0.20 1.50 R 
T5 1 0.24 1.73 R 
T6 1 0.16 1.75 L 
T7 1 0.28 1.50 L 
T8 1 0.28 1.50 L 
T1 2 0.20 1.50 R 
T2 2 0.18 2.00 L 
T3 2 0.24 1.50 R 
T4 2 0.16 1.50 L 
T5 2 0.24 1.50 R 
T6 2 0.16 1.75 L 
T7 2 0.20 1.50 L 
T8 2 0.20 1.50 R 
T1 3 0.28 1.50 L 
T2 3 0.20 1.75 L 
T3 3 0.20 1.75 R 
T4 3 0.16 1.50 L 
T5 3 0.18 2.00 R 
T6 3 0.16 1.75 R 
T7 3 0.16 1.50 L 
T8 3 0.20 1.75 R 
T1 4 0.18 2.00 L 
T2 4 0.20 1.75 R 
T3 4 0.24 1.73 R 
T4 4 0.16 1.75 L 
T5 4 0.24 1.73 R 
T6 4 0.18 2.00 L 
T7 4 0.16 1.5 R 
T8 4 0.24 1.5 R 
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C. ROLL AND SWAY MOTION SESSION 

Table 24 demonstrates, in detail, the motion characteristics in each trial. 

Table 24. Attributes of Sway + Roll trials 

Trial Number Modifier Sway Acceleration 
(peak g) 

Sway Period 
(sec) Sway Direction 

T1 1 0.24 1.25 L 
T2 1 0.28 1.25 R 
T3 1 0.24 1.50 L 
T4 1 0.20 1.25 R 
T5 1 0.24 1.50 R 
T6 1 0.16 1.50 L 
T7 1 0.28 1.25 L 
T8 1 0.28 1.25 L 
T1 2 0.20 1.25 R 
T2 2 0.28 1.50 L 
T3 2 0.24 1.25 R 
T4 2 0.16 1.25 L 
T5 2 0.24 1.25 R 
T6 2 0.16 1.50 L 
T7 2 0.20 1.25 L 
T8 2 0.20 1.25 R 
T1 3 0.28 1.25 L 
T2 3 0.20 1.50 L 
T3 3 0.20 1.50 R 
T4 3 0.16 1.25 L 
T5 3 0.28 1.50 R 
T6 3 0.16 1.50 R 
T7 3 0.16 1.25 L 
T8 3 0.20 1.50 R 
T1 4 0.28 1.50 L 
T2 4 0.20 1.50 R 
T3 4 0.24 1.50 R 
T4 4 0.16 1.50 L 
T5 4 0.24 1.50 R 
T6 4 0.28 1.50 L 
T7 4 0.16 1.25 R 
T8 4 0.24 1.25 R 
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D. PITCH, ROLL, AND SWAY MOTION SESSION 

Table 25 demonstrates, in detail, the motion characteristics in each trial. 

Table 25. Attributes of Sway + Pitch + Roll trials 

Trial 
Number Modifier Sway Acceleration 

(peak g) 
Sway Period 

(sec) 
Sway 

Direction 
T1 1 0.16 1.75 R 
T2 1 0.24 1.75 R 
T3 1 0.18 2.00 R 
T4 1 0.28 1.00 L 
T5 1 0.14 2.00 R 
T6 1 0.14 2.00 R 
T1 2 0.24 1.75 L 
T2 2 0.24 1.75 L 
T3 2 0.28 1.00 L 
T4 2 0.16 1.00 L 
T5 2 0.16 1.75 L 
T6 2 0.16 1.00 R 
T1 3 0.16 1.75 L 
T2 3 0.14 2.00 R 
T3 3 0.28 1.00 R 
T4 3 0.28 1.00 L 
T5 3 0.24 1.75 L 
T6 3 0.18 2.00 L 
T1 4 0.18 2.00 R 
T2 4 0.16 1.00 R 
T3 4 0.16 1.75 L 
T4 4 0.14 2.00 L 
T5 4 0.16 1.00 R 
T6 4 0.18 2.00 R 
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APPENDIX D. DEMOGRAPHICS AND TIPPING COEFFICIENT 

Table 26. Participants’ height, weight, shoe size, and theoretical tipping coefficient 

Participant 
ID Gender Height 

(in) 
Weight 

(lbs) Shoe Size 
Convenient 

Stance Width 
(in) 

Theoretical 
Tipping 

Coefficient 
3001 M 72.25 209.4 11 15.0 0.182 
3002 M 76 251 13 14.6 0.168 
3003 M 67.75 224.6 10.5 13.8 0.178 
3101 F 67.5 132.8 8 11.4 0.154 
3103 M 71 198.8 9.5 14.2 0.175 
0101 M 67.75 132.4 9 14.6 0.189 
0102 M 69 157.4 10 12.6 0.160 
0103 M 73 262.2 12.5-13 19.7 0.237 
0201 M 72 218.4 10 15.0 0.182 
0202 F 65 135 7 11.5 0.160 
0203 F 65.75 164.8 8.5 12.2 0.169 
0501 M 73.25 266.4 11 15.0 0.179 
0502 M 71.75 203.6 11 15.4 0.188 
0601 F 67.75 169 8 11.0 0.148 
0602 M 70.75 156.4 9.5 11.8 0.146 
0603 M 72.5 176.8 10.5 15.0 0.181 
0701 M 70 234.6 10.5 14.2 0.178 
0702 M 72 174.2 10 16.1 0.197 
0801 F 72.5 223 10 13.0 0.163 
0802 F 68 171 10 11.8 0.158 
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APPENDIX E. PRELIMINARY FINDINGS AND INSIGHTS 

We began the preliminary trials using one of the researchers as the “Participant” 

to determine whether the motion platform was behaving correctly in response to the 

programmed motion parameters. We started with the simplest linear motion, from point 

A to point B. The lowest level of acceleration (0.08 g) was used, and the shortest period 

of acceleration (0.5 seconds). The sway acceleration was very easily tolerated, with no 

MIIs. The acceleration level was incremented on successive trials and continued to be 

benign, even as the acceleration level increased beyond the 0.16 g limit identified in 

Table 1 as “Extremely Hazardous.” That result was surprising and unexpected. 

In the preliminary testing, we also varied the time of application. The observed 

preliminary results were that, for a given level of acceleration, longer periods of 

acceleration (longer than 0.5 seconds, up to approximately 2.0 seconds) were more likely 

to induce an MII than shorter periods of acceleration. At the 0.5 seconds of duration (the 

shortest), we did not observe an MII until reaching 0.50 g. That is an acceleration value 

more than three times (3.12) greater than the maximum limit suggested by  

Baitis et al. (1984). 
The next step in the preliminary testing was to change the basic nature of the 

sway motion, from A-to-B to a “round trip” motion (A-to-B-to-A). This type of motion 

was equivalent to one cycle of a sine wave. One member of the research team has 

considerable time at sea and, in his opinion, this two-way motion cycle is much more 

similar to ship motion than a single, linear displacement. Further trials of the two-way 

sway motion were observed and appeared to result in a higher probability of MII at lower 

levels of acceleration compared to the one-way sway motion. Based on those 

observations, we chose to implement the two-way sway motion for all subsequent data 

collection; in part, because the displacement limits were an obstacle for fully exploring 

the effects of higher sway accelerations. 

We believe that two preexperiment findings may be of interest: 

• The level of sway acceleration needed to induce an MII was considerably 

greater than the predictions of Baitis et al. (1984) shown in Figure 1 of  

this report. 
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• A two-way cycle of motion may be more representative of ship motion 

and may be more likely to result in an MII, compared to a one-way  

linear acceleration. 



 65 

LIST OF REFERENCES 

Applebee, T. R., McNamara, T. M., & Baitis, A. E. (1980). Investigation into the 
seakeeping characteristics of the US Coast Guard 140-ft WTGB class cutters: Sea 
trial aboard the USCGC MOBILE BAY. Bethesda, MD: Naval Ship Research and 
Development Center (NSDRC). 

Baitis, A. E., Applebee, T. R., & McNamara, T. M. (1984). Human factors considerations 
applied to operations on the FFG-8 and LAMPS MK-III. Naval Engineers 
Journal, 96(3), 191–199. 

Baitis, A. E., Bales, S. L., McCreight, W. R., & Meyers, W. G. (1976). Prediction of 
extreme ammunition cargo forces at sea (S. Performance, Trans.). Bethesda, MD: 
Naval Ship Research and Development Center. 

Baitis, A. E., Woolaver, D. A., & Beck, T. A. (1983). Rudder roll stabilisation for  
Coast Guard cutters and frigates. Naval Engineers Journal, 95(3), 267–282.  

Baker, W. D. R., & Mansfield, N. J. (2010). Effects of horizontal whole-body vibration 
and standing posture on activity interference. Ergonomics, 53(3), 365–374. 

Bles, W., Nooy, S., & Boer, L. C. (2002). Influence of ship listing and ship motion on 
walking speed. In M. Schreckenberg & S. D. Sharma (Eds.), Proceedings of 
Conference on Pedestrian and Evacuation Dynamics (pp. 437–452). Berlin, 
Germany: Springer. 

Bortolami, S. B., DiZio, P., Rabin, E., & Lackner, J. R. (2003). Analysis of human 
postural responses to recoverable falls. Experimental Brain Research, 151,  
387–404. 

Brown, L. A., Jensen, J. L., Korff, T., & Woollacott, M. H. (2001). The translating 
platform paradigm: Perturbation displacement waveform alters the postural 
response. Gait and Posture, 14, 256–263. 

Buchanan, J. J., & Horak, F. B. (1999). Emergence of postural patterns as a function of 
vision and translation frequency. Journal of Neurophysiology, 81(5), 2325–2339. 

Chaudhry, H., Findley, T., Quigley, K. S., Ji, Z., Maney, M., Sims, T., . . . Fould, R. 
(2005). Postural stability index is a more valid measure of stability than 
equilibrium score. Journal of Rehabilitation Research and Development, 42(4), 
547–556. 

Colwell, J. L. (1989). Human factors in the naval environment: A review of the motion 
sickness and biodynamic problems. Dartmouth, Nova Scotia: Canadian National 
Defence R&D Branch. 



 66 

Crossland, P. (2005, 20-22 August). The influence of ship motion induced lateral 
acceleration on walking speed. Paper presented at the 2nd International 
Conference on Pedestrian and Evacuation Dynamics 2003, Greenwich, UK. 

Crossland, P., & Lloyd, A. R. J. M. (1993). Experiments to quantify the effects of ship 
motions on crew task performance – Phase I, motion induced interruptions and 
motion induced fatigue. Farnborough, UK: Defence Research Agency. 

Crossland, P., & Rich, K. J. N. C. (1998). Validating a model of the effects of ship motion 
on postural stability. Paper presented at the International Conference on 
Environmental Ergonomics (ICEE), San Diego, CA. 

Crossland, P., Colwell, J. L., Baitis, A. E., Holcombe, F. D., & Strong, R. (1994). 
Quantifying human performance degradation in a ship motion environment: 
Experiments at the US Naval Biodynamics Laboratory. International Seminar on 
Comfort on Board and Operability Evaluation of High-Speed Marine Vehicles, 
Genoa, Italy. 

Crossland, P., Evans, M. J., Grist, D., Lowten, M., Jones, H., & Bridger, R. S. (2007). 
Motion-induced interruptions aboard ship: Model development and application to 
ship design. Occupational Ergonomics, 7(3), 183–199. 

Dijkstra, T. M. H., Schöner, G., Giese, M. A., & Gielen, C. C. A. M. (1994). Frequency 
dependence of the action-perception cycle for postural control in a moving visual 
environment: Relative phase dynamics. Biological Cybernetics, 71(6),  
489–501. 

Dobie, T. G., May, J., & Flanagan, M. B. (2003). The influence of visual reference on 
stance and walking on a moving surface. Aviation Space and Environmental 
Medicine, 74(8), 838–845. 

Gianaros, P. J., Muth, E. R., Mordkoff, J. T., Levine, M. E., & Stern, R. M. (2001). A 
questionnaire for the assessment of the multiple dimensions of motion sickness. 
Aviation Space and Environmental Medicine, 72(2), 115–119. 

Graham, R. (1990). Motion-induced interruptions as ship operability criteria. Naval 
Engineers Journal, 102(2), 65–71. 

Graham, R., Baitis, A. E., & Meyers, W. G. (1991). A frequency domain method for 
estimating the incidence and severity of sliding. Bethesda, MD: David Taylor 
Research Center (DTRC). 

Graham, R., Baitis, A. E., & Meyers, W. G. (1992). On the development of seakeeping 
criteria. Naval Engineers Journal, 104(3), 259–275. 

Greve, J., Cuğ, M., Dülgeroğlu, D., Brech, G. C., & Alonso, A. C. (2013). Relationship 
between anthropometric factors, gender, and balance under unstable conditions in 
young adults. BioMed Research International, 5. doi: 10.1155/2013/850424. 



 67 

Holbein, M. A., & Redfern, M. S. (1997). Functional stability limits while holding loads 
in various positions. International Journal of Industrial Ergonomics, 19(5),  
387–395. 

Holmes, M., MacKinnon, S., Matthews, J., Albert, W., Mills, S., & Bass, D. (2005,  
July 31-August 5). Motion induced interruptions during simulated ship motions. 
Paper presented at the ISB XXth Congress – ASB 29th Annual Meeting, 
Cleveland, OH. 

Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: 
Adaptation to altered support-surface configurations. Neurophysiology, 55(6), 
1369–1381. 

Hue, O., Simoneau, M., Marcotte, J., Berrigan, F., Doré, J., Marceau, P., . . . Teasdale, N. 
(2007). Body weight is a strong predictor of postural stability. Gait and Posture, 
26(1), 32–38. 

Johansson, R., Magnusson, M., & Fransson, P. A. (1995). Galvanic vestibular stimulation 
for analysis of postural adaptation and stability. IEEE Transactions on Biomedical 
Engineering, 42(3), 282–292. 

Keshner, E. A., Allum, J. H. J., & Pfaltz, C. R. (1987). Postural coactivation and 
adaptation in the sway stabilizing responses of normals and patients with bilateral 
vestibular deficit. Experimental Brain Research, 69(1), 77–92. 

Ku, P. X., Abu Osman, N. A., Yusof, A., & Wan Abas, W. A. B. (2012). Biomechanical 
evaluation of the relationship between postural control and body mass index. 
Journal of Biomechanics, 45(9), 1638–1642. 

Langlois, R. G. (2010). Development of a spatial inverted pendulum shipboard postural 
stability model. In O. Turan, J. E. Bos, J. Stark & J. L. Colwell (Eds.), 
International Conference of Human Performance at Sea (HPAS) 2010  
(pp. 137–148). Glasgow, UK: University of Strathclyde. 

Lanska, D. J., & Goetz, C. G. (2000). Romberg’s sign: Development, adoption, and 
adaptation in the 19th century. Neurology, 55(8), 1201–1206. 

MacKinnon, S. N., Matthews, J., Holmes, M., & Albert, W. J. (2011/2012). The effect of 
platform motions upon the biomechanical demands of lifting tasks. Occupational 
Ergonomics, 10, 103–112. 

Matthews, J. D., MacKinnon, S. N., Albert, W. J., Holmes, M., & Patterson, A. (2007). 
Effects of moving environments on the physical demands of heavy material 
handling operators. International Journal of Industrial Ergonomics, 37, 43–50. 



 68 

McCauley, M. E., & Matsangas, P. (2005, 9-10 November). Ship’s motion effects on 
crew performance: A preliminary analysis of motion induced effects on high 
speed vessel (HSV). Paper presented at the Network Centric Warfare Conference 
2005, Athens, Greece. 

McCauley, M. E., Matsangas, P., & Miller, N. L. (2005). Motion and fatigue study in 
high speed vessel operations: Phase 1 report. Monterey, CA: Naval Postgraduate 
School. 

McCauley, M. E., Pierce, E. C., & Matsangas, P. (2007). The high-speed Navy: Vessel 
motion influences on human performance. Naval Engineers Journal, 119(1),  
35–44. 

McCauley, M. E., Pierce, E. C., Matsangas, P., Price, B., LaBreque, J., & Blankenship, J. 
(2007). Vessel motion effects on human performance aboard the FSF-1 Sea 
Fighter. Monterey, CA: Naval Postgraduate School and NSWC Panama City 
Division. 

McDermott, K., Shaw, C., Demchak, J., & Holbein, M. A. (2005, 26-30 September). 
Validity of functional stability limits as a measure of balance in adults ages 23 - 
73. Paper presented at the Human Factors and Ergonomics (HFES) Society 49th 
Annual Meeting, Orlando, FL. 

McGinnis, P. (2013). Biomechanics of sport and exercise. (3rd ed.). Champaign, IL: 
Human Kinetics. 

Morrison, T. R., Dobie, T. G., Willems, G. C., Webb, S. C., & Endler, J. L. (1991). Ship 
roll stabilization and human performance. New Orleans, LA: Naval Biodynamics 
Laboratory. 

Nawayseh, N., & Griffin, M. J. (2006). Effect of frequency, magnitude and direction of 
translational and rotational oscillation on the postural stability of standing people. 
Journal of Sound and Vibration, 298(3), 725–754. 

Sari, M., & Griffin, M. J. (2009). Subjective assessment of the postural stability of 
walking subjects exposed to lateral vibration. Paper presented at the 44th UK 
Conference on Human Responses to Vibration, Loughborough University, 
Loughborough. 

Southard, V., Dave, A., & Douris, P. (2010). Exploring the role of body mass index on 
balance reactions and gait in overweight sedentary middle-aged adults: A pilot 
study. Journal of Primary Care and Community Health, 1(3), 178–183. 

Stevens, S. C., & Parsons, M. G. (2002). Effects of motion at sea on crew performance: A 
survey. Marine Technology and SNAME News, 39(1), 29–47. 



 69 

Wedge, J., & Langlois, R. G. (2003, July). Simulating the effects of ship motion on 
postural stability using articulated dynamic models. Paper presented at the 
Summer Computer Simulation Conference (SCSC) 2003, Montreal, Canada. 

Wertheim, A. H., Heus, R., & Vrijkotte, T. G. M. (1994). Energy expenditure, physical 
workload and postural control during walking on a moving platform. Soesterberg, 
The Netherlands: TNO Institute of Human Factors. 

Wiker, S. F., & Pepper, R. L. (1978). Change in crew performance, physiology and 
affective state due to motions aboard a small monohull vessel: A preliminary 
study. Washington, D.C.: United States Coast Guard, Office of Research and 
Development. 

Wilkins, R. H., & Brody, I. A. (1968). Romberg’s sign. Archives of Neurology,  
19(1), 123. 

  



 70 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California 

3. Research Sponsored Programs Office, Code 41 
Naval Postgraduate School 
Monterey, California 

4. Richard Mastowski (Technical Editor) ..........................................................................1 
Graduate School of Operational and Information Sciences (GSOIS)  
Naval Postgraduate School 
Monterey, California 

5. Research Professor Michael E. McCauley .....................................................................1 
Operations Research Department 
Monterey, California 

6. CDR Panagiotis Matsangas, Hellenic Navy ................................................................1 
Zilonos Efthimiou 10 Street 
17237, Athens, Greece 

7. Amy Bolton, Ph.D., Code 342 .....................................................................................1 
Office of Naval Research 
875 N. Randolph Street 
Arlington, VA 22203 

 


	I. Introduction
	A. GeneraL
	B. MIIS versus motion amplitude and frequency
	C. Balance and body mass
	D. balance and base of support
	E. Learning to Compensate for motion
	F. Tipping coefficient
	G. Scope

	II. Methodology
	A. Experimental Design
	B. Participants
	C. Equipment and InstrUMents
	1. Vicon Motion Capture System
	2. Motion Base
	3. Motion Sensors on the Platform
	4. Study Questionnaires
	5. MSAQ
	6. Sharpened Romberg Test

	D. Procedures
	1. Sway-Only Motion Session
	2. Pitch and Sway Motion Session
	3. Roll and Sway Motion Session
	4. Pitch, Roll, and Sway Motion Session
	5. External Validity of Motion Profiles

	E. Variables
	1. Independent Variables
	2. Controlled Variables
	3. Dependent Variables

	F. Analysis
	G. Demographics

	III. RESULTS
	A. Preliminary FINDINGS and Insights
	B. Basic findings
	C. Occurence of MIIs
	D. Model development
	E. Severity of MIIs: a qualitative approach
	F. The association between Sharpened Romberg test  and MIIs
	G. Subjective ratings of motion severity
	H. Comparison with MII model

	IV. DISCUSSION
	V. Recommendations for Future research
	Appendix A. Pre- and Posttest Questionnaires
	Appendix B. Participants and Collected Data
	Appendix C. Motion Characteristics for  Each Trial
	A. Sway-only Motion Session
	B. Pitch and Sway Motion Session
	C. Roll and Sway Motion Session
	D. Pitch, Roll, and Sway Motion Session

	Appendix D. Demographics and Tipping Coefficient
	Appendix E. Preliminary Findings and Insights
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

